
Mark Coates
Department of Electrical and Computer Engineering
McGill University

1

Learning to Defer with Early-Exit Neural Networks

Joint work with Florence Regol (Ph.D. student) and Joud Chataoui (M.Sc. Student)

F. Regol, J. Chataoui, and M. Coates, “Jointly Learning to Exit and Infer
in Dynamic Neural Networks: JEI-DNN,” to appear, ICLR 2024.

2

Previous Approaches
• Threshold-based Gate Mechanisms

• Confidence score thresholds to decide whether to exit

• BranchyNet1, MSDNet2, RANet3, CF-ViT4, Dynamic Perceiver5

• Frozen Backbones and IMs + Learnable Gate Mechanisms

• EPNet6, PTEENet7, EENet8

• Adaptive IM training

• BoostedNet9, L2W10

3

1: Teerapittayanon et al., ICPR 2016
2: Huang et al., ICLR 2018
3: Yang et al., CVPR 2020
4: Chen et al., AAAI 2023
5: Han et al., ICCV 2023

6: Dai et al., ICPR 2020
7: Lahiany et al., ICLR 2018
8: Ilhan et al., CVPR 2023

9: Yu et al., ICPR 2023
10: Han et al., ICLR 2022

4
Maja Pavlovic, Expected Calibration Error (ECE): A Step-by-Step Visual Explanation,
Towards Data Science, Jul. 2023.

Expected Calibration Error:

Bins Bm

conf(Bm): avg. pred. prob in bin m

acc(Bm): accuracy in bin m

n: total number of points

5

CIFAR100
T2T-ViT-14 (Yuan et al., ICCV 2021)

Inference Module (layer)

JOINTLY-LEARNED EXIT AND INFERENCE FOR A
DYNAMIC NEURAL NETWORK : JEI-DNN

FLORENCE REGOL†, JOUD CHATAOUI† and MARK COATES - McGill University, ECSE Department

MOTIVATING EARLY-EXITING

Problem Machine learning
models are increasingly
resource hungry.

Idea Not all inferences need
the same amount of com-
putation to be successful.

 Neural Network

 Neural Network (backbone)

 GMs
Gate
mechanisms

 IMs
Inference
modules

x

classifier 1

gate 1

X

classifier 2

gate 2

o

x layer 1 layer 2 layer L classifierL

layer 1 layer 2

Traditional Architecture

Early-Exit Dynamic Network (EEDN)

Computation skipped

EEDNs can adapt their computation to the sample at-hand.
! Reduction of inference cost.

STATE-OF-THE-ART EEDN BASELINES
Existing work: Focus on the IMs and use fixed-threshold (⌘) GMs:

gate l =

(
earlyexit if maxk p̂l

k > ⌘

continue o.w.
, p̂l = predicted prob. IM l

Issues:

1. IMs and GMs are disconnected during training.
2. Uncertainty information is already consumed by maxk p̂l

k.
3. Heavily relies on p̂l being accurate. ! wrong:

Early IMs have an ECE
(ECE ⇡ Error on p̂l) of
more than 10%.

JEI-DNN OVERVIEW
Our solution:

• Learn the GMs. ! Uncertainty information.

• Model the GMs as a random variable p�(G = l|x).

• Jointly train the IMs and the GMs. ! No disconnect.

JEI-DNN loss:
Expectation over cross-entropy LCE + weighted inference cost �IC.

L = EY,XEG|X [LCE(Y, p̂G|X
✓ (X)) + �ICG|X]. (1)

Optimization:
Bi-level formulation.
Alternates between training
1) The GMs parameters �.
2) The IMs parameters ✓.

C⇤l
✓ =Cost of choosing IM l,

P ⇤
� (G = l) =Prob. of choosing IM l,

gl� =Parameter of P�(G),

ŷl✓ =Prediction of IM l.

Joint training via bi-level
optimization
GMs training

... ...

SAMPLE EXIT PATTERN
JEI-DNN vs SOTA baselines BoostedNet [1] and L2W-DEN [2].

Accuracy on exited samples. JEI-DNN

• High accuracy on early ex-
its.

• Low accuracy on late exits.
• Concentrates on few IMs.
• Starts to exit at IMs 4, 5.

vs

L2W-DEN and BoostedNet

• Low accuracy on early ex-
its.

• High accuracy on late exits.
• Dispersed on all IMs.
• Starts to exit at IMs 1.

RESULTS
Experiments on classification datasets, with T2T-ViT backbone [3].

JEI-DNN has better accuracy vs inference cost (Mul-Add):

CIFAR100 (t2t-14) SVHN (t2t-7) CIFAR100LT (t2t-14)

JEI-DNN can enhance any architecture:

ImageNet (Dynamic Perceiver [4],
SOTA dynamic architectures)

Super-Resolution-MNIST (GRIT [5], a
graph learning algorithm)

JEI-DNN has better uncertainty characterization:

ECE vs Mul-Add.
CIFAR100 (t2t-14.

Inefficiency vs Mul-Add.
CIFAR100 (t2t-14).

Average empirical ↵̂ vs
requested ↵.

Def. conformal prediction: Outputs a conformal interval C that contains the
ground truth with probability 1� ↵. The smaller the |C| the better.

REFERENCES
[1] H. Yu, H. Li, G. Hua, G. Huang, and H. Shi, “Boosted dynamic neural networks,” in Proc. AAAI Conf. on Artificial Intell., vol. 37, 2023.

[2] Y. Han, Y. Pu, Z. Lai, C. Wang, S. Song, J. Cao, W. Huang, C. Deng, and G. Huang, “Learning to weight samples for dynamic
early-exiting networks,” in Proc. European Conf. on Computer Vision (ECCV), 2022.

[3] L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, Z. Jiang, F. E. Tay, J. Feng, and S. Yan, “Tokens-to-token ViT: Training vision transformers
from scratch on imagenet,” in Proc, IEEE Int. Conf. on Computer Vision (ICCV), 2021.

[4] Y. Han, D. Han, Z. Liu, Y. Wang, X. Pan, Y. Pu, C. Deng, J. Feng, S. Song, and G. Huang, “Dynamic perceiver for efficient visual
recognition,” in Proc, IEEE Int. Conf. on Computer Vision (ICCV), 2023.

[5] L. Ma, C. Lin, D. Lim, A. Romero-Soriano, P. K. Dokania, M. Coates, P. Torr, and S.-N. Lim, “Graph inductive biases in transformers
without message passing,” in Proc. Int. Conf. Machine Learning. (ICML), 2023.

Problems:
1. IMs and GMs disconnected during training

 training-test mismatch

2. Uncertainty information is consumed by
thresholding harder to calibrate

3. Relies on well-calibrated classifiers

6

• Many lightweight gates and IMs

• Jointly learn the gate mechanisms and IMs

• Model the gate output

Our Solution: JEI-DNN

JOINTLY-LEARNED EXIT AND INFERENCE FOR A
DYNAMIC NEURAL NETWORK : JEI-DNN

FLORENCE REGOL†, JOUD CHATAOUI† and MARK COATES - McGill University, ECSE Department

MOTIVATING EARLY-EXITING

Problem Machine learning
models are increasingly
resource hungry.

Idea Not all inferences need
the same amount of com-
putation to be successful.

 Neural Network

 Neural Network (backbone)

 GMs
Gate
mechanisms

 IMs
Inference
modules

x

classifier 1

gate 1

X

classifier 2

gate 2

o

x layer 1 layer 2 layer L classifierL

layer 1 layer 2

Traditional Architecture

Early-Exit Dynamic Network (EEDN)

Computation skipped

EEDNs can adapt their computation to the sample at-hand.
! Reduction of inference cost.

STATE-OF-THE-ART EEDN BASELINES
Existing work: Focus on the IMs and use fixed-threshold (⌘) GMs:

gate l =

(
earlyexit if maxk p̂l

k > ⌘

continue o.w.
, p̂l = predicted prob. IM l

Issues:

1. IMs and GMs are disconnected during training.
2. Uncertainty information is already consumed by maxk p̂l

k.
3. Heavily relies on p̂l being accurate. ! wrong:

Early IMs have an ECE
(ECE ⇡ Error on p̂l) of
more than 10%.

JEI-DNN OVERVIEW
Our solution:

• Learn the GMs. ! Uncertainty information.

• Model the GMs as a random variable p�(G = l|x).

• Jointly train the IMs and the GMs. ! No disconnect.

JEI-DNN loss:
Expectation over cross-entropy LCE + weighted inference cost �IC.

L = EY,XEG|X [LCE(Y, p̂G|X
✓ (X)) + �ICG|X]. (1)

Optimization:
Bi-level formulation.
Alternates between training
1) The GMs parameters �.
2) The IMs parameters ✓.

C⇤l
✓ =Cost of choosing IM l,

P ⇤
� (G = l) =Prob. of choosing IM l,

gl� =Parameter of P�(G),

ŷl✓ =Prediction of IM l.

Joint training via bi-level
optimization
GMs training

... ...

SAMPLE EXIT PATTERN
JEI-DNN vs SOTA baselines BoostedNet [1] and L2W-DEN [2].

Accuracy on exited samples. JEI-DNN

• High accuracy on early ex-
its.

• Low accuracy on late exits.
• Concentrates on few IMs.
• Starts to exit at IMs 4, 5.

vs

L2W-DEN and BoostedNet

• Low accuracy on early ex-
its.

• High accuracy on late exits.
• Dispersed on all IMs.
• Starts to exit at IMs 1.

RESULTS
Experiments on classification datasets, with T2T-ViT backbone [3].

JEI-DNN has better accuracy vs inference cost (Mul-Add):

CIFAR100 (t2t-14) SVHN (t2t-7) CIFAR100LT (t2t-14)

JEI-DNN can enhance any architecture:

ImageNet (Dynamic Perceiver [4],
SOTA dynamic architectures)

Super-Resolution-MNIST (GRIT [5], a
graph learning algorithm)

JEI-DNN has better uncertainty characterization:

ECE vs Mul-Add.
CIFAR100 (t2t-14.

Inefficiency vs Mul-Add.
CIFAR100 (t2t-14).

Average empirical ↵̂ vs
requested ↵.

Def. conformal prediction: Outputs a conformal interval C that contains the
ground truth with probability 1� ↵. The smaller the |C| the better.

REFERENCES
[1] H. Yu, H. Li, G. Hua, G. Huang, and H. Shi, “Boosted dynamic neural networks,” in Proc. AAAI Conf. on Artificial Intell., vol. 37, 2023.

[2] Y. Han, Y. Pu, Z. Lai, C. Wang, S. Song, J. Cao, W. Huang, C. Deng, and G. Huang, “Learning to weight samples for dynamic
early-exiting networks,” in Proc. European Conf. on Computer Vision (ECCV), 2022.

[3] L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, Z. Jiang, F. E. Tay, J. Feng, and S. Yan, “Tokens-to-token ViT: Training vision transformers
from scratch on imagenet,” in Proc, IEEE Int. Conf. on Computer Vision (ICCV), 2021.

[4] Y. Han, D. Han, Z. Liu, Y. Wang, X. Pan, Y. Pu, C. Deng, J. Feng, S. Song, and G. Huang, “Dynamic perceiver for efficient visual
recognition,” in Proc, IEEE Int. Conf. on Computer Vision (ICCV), 2023.

[5] L. Ma, C. Lin, D. Lim, A. Romero-Soriano, P. K. Dokania, M. Coates, P. Torr, and S.-N. Lim, “Graph inductive biases in transformers
without message passing,” in Proc. Int. Conf. Machine Learning. (ICML), 2023.

<latexit sha1_base64="YDNj8Bc51zYB8zDlgKnomYS8Tzs=">AAACoHicbZFBT9swFMfdDEYJbGvHBYmLRYXELlUybcABJGgPa08UaYVCU0WO61AL24lsB6hC+DS7bt+Hb4Pb+sAanmTrr//vPfn5vShlVGnPe6k4H1ZWP65V192NzU+fv9TqXy9VkklM+jhhiRxESBFGBelrqhkZpJIgHjFyFd21Z/zqnkhFE/FbT1My4uhW0JhipI0V1rZ7YZBO6P6vE/YUcKQnUZw/FiH9FtYaXtObBywL34oGsNEL65U0GCc440RozJBSQ99L9ShHUlPMSOEGmSIpwnfolgyNFIgTNcrnXyjgnnHGME6kOULDufu2IkdcqSmPTOasS7XMZuZ7bJjp+GiUU5Fmmgi8eCjOGNQJnM0DjqkkWLOpEQhLanqFeIIkwtpMzQ0EecAJ50iM8yA6K3Jzx/CsKJZIy5JWiQwsGZRI15JuiVxbcl0ibUvahriu2ZG/vJGyuPze9A+aPy9+NE6P7baqYAfsgn3gg0NwCjqgB/oAg2fwB/wF/5xdp+OcOxeLVKdia7bAf+HcvAI7YdDY</latexit>

P�(G = l|xi)

7

• Only need to evaluate if dynamic evaluation reaches layer l

• Can use any intermediate values calculated by gates, IMs, and base architecture

• Denote aggregate information

• Construct an additive model:

Modelling the gate variables

<latexit sha1_base64="Xgm/jBN1T9ykQqSKKO1uQfKzs/g=">AAACnXicbZFNTxsxEIadhfKx/SBQceoBqxFST9FuVT4OHICoUpEqBBIhQdk08jqzYGF7F9sLiqz9Mb2WX8S/qRN8gCwj2Xr1PjOa0UxacKZNFD01goXFd0vLK6vh+w8fP6011zcudV4qCl2a81z1U6KBMwldwwyHfqGAiJRDL73tTHnvHpRmubwwkwKGglxLljFKjLNGzc1EEHOTZpZWI/bHJhzuMK9GzVbUjmaB6yL2ooV8nI3WG0UyzmkpQBrKidaDOCrM0BJlGOVQhUmpoSD0llzDwElJBOihnc1f4W3njHGWK/ekwTP3ZYUlQuuJSF3mdFo9z6bmW2xQmmx/aJksSgOSPjfKSo5NjqfLwGOmgBo+cYJQxdysmN4QRahxKwsTCQ80F4LIsU3So8q6P8NHVTVHjj05rpG+J/0aOfHkpEauPLmqkY4nHUfC0N0onr9IXVx+b8e77Z3zH63DA3+tFfQFfUXfUIz20CH6hc5QF1Fk0V/0Dz0GW8HP4Hdw+pwaNHzNZ/Qqgt5/Z/7QHA==</latexit>

cl
i

Under review as a conference paper at ICLR 2024

Our goal is to simultaneously learn the parameters ✓ of the IMs and choose P (G = l�xi) in order
to minimize the expected loss as shown in Figure 1. We target P (G = l�xi) rather than P (Ej �xi)
for j = 1, . . . , l because directly learning the P (Ej) leads to optimization issues. The product of
probabilities across multiple layers can quickly vanish or saturate to 1.

Modeling P (G�xi). In practice, we only need to evaluate P (G = l�xi) if the dynamic evaluation
has reached that point, i.e., everything up to f l

✓(zli) has been evaluated and is accessible. There-
fore, our parameterization of P (G = l�xi) can include any intermediate values calculated by the
base architecture, the inference modules, and the gates up to and including layer l. We denote this
aggregation of information as c≤li .

This however also implies that we cannot directly model the multiclass distribution P (G�xi) with
the traditional softmax approach since it would require f l

✓(zli) to be evaluated for all l. This would
defeat the purpose of early-exiting. Instead, we model each P (G = l�xi) sequentially, starting from
the first layer l = 1, with a learnable variable gl�(c≤li) ∈ [0,1]. We set P (G = l�xi) to the minimum
of the learnable variable gl�(c≤li) ∈ [0,1] and 1 −∑l−1

j=1 gj�(c≤ji). Since the model must exit at the
final gate if it has not already done so, we have gL(c≤Li) = 1. Thus:

P�(G = 1�xi) = g1�(c≤1i), (7)

P�(G = l�xi) =min(gl�(c≤li),1 − l−1�
j=1

gj�(c≤ji)) for l = 2, . . . , L . (8)

The min operator in Eq. (8) ensures that the {P�(G = l�xi); l = 1, . . . , L} form a valid probability
distribution. The loss is then a proper approximation of the expectation in Eq. (5). It also guarantees
that P (El�X = x), calculated using (4), which that governs the decision to exit, lies in [0,1].
This formulation leads to a much more stable model for the gate probabilities compared to a param-
eterization through P (El�x). A deviation in one of the gl�s has an additive rather than multiplicative
impact on subsequent P�(G = l�xi)s. The left diagram in figure 1 depicts the modeling of P (G�xi).
Our approximated loss from equation 6 is then:

L ≈ 1

N

N�
i=1

L�
l=1
(LCE(yi, p̂l

✓(xi)) + �ICl
norm)min�gl�(c≤li),1 − l−1�

j=1
gj�(c≤ji)�. (9)

Any parameterization of the IMs f l
✓ and gates function gl�(c≤ji) can be adopted. However, the

modules must be small compared to the size of one layer of the backbone model to prevent them
from substantially increasing the computational cost of the entire layer during inference. In our
experiments, f l

✓ and gl�(c≤ji) are parameterized as simple one-layer neural networks and uncertainty
metrics are extracted from c≤ji to serve as input to gl�(⋅). A detailed description of our modules is
included in Section 4. Appendix 8.2 includes the inference cost of the gates and IMs to demonstrate
that the added computation is minimal when compared to the inference cost of a single layer. (The
total added computation amounts to less than 1.12% of the Mul-Adds of the backbone.)

Uncertainty prediction : Next we describe how we use the predicted probabilities p̂l
✓(xi) to form

conformal intervals. The conformal intervals are derived from a conformal threshold ⌧V,↵ that is
computed using a validation set V . However, since we can view the IMs as solving different subtasks
over different subsets of the data Dl, we should compute a different conformal threshold for each
subtask. Hence, we form one validation set per gate, V l, where V l = {i; l ∼ P�(G�xi) , i ∈ V},
and compute a conformal threshold from that subset: ⌧Vl,↵. If there are too few samples in the
validation set associated with gate l, we set ⌧Vl,↵ to a general threshold ⌧V,↵ computed using the
entire validation set. The conformal intervals are then constructed as follows:

Ci = {k; 1 − p̂l,(k)
✓ (xi) < ⌧Vl,↵ , l ∼ P (G�xi)} (10)

There are many other ways to construct the sets to compute the threshold in the EDNN setting. In
Appendix 8.3, we show that a variety of methods produce similar results.

We present candidate designs for the gates and IMs for concreteness, but note that other choices are
possible within the JEI-DNN framework.

5

<latexit sha1_base64="YDNj8Bc51zYB8zDlgKnomYS8Tzs=">AAACoHicbZFBT9swFMfdDEYJbGvHBYmLRYXELlUybcABJGgPa08UaYVCU0WO61AL24lsB6hC+DS7bt+Hb4Pb+sAanmTrr//vPfn5vShlVGnPe6k4H1ZWP65V192NzU+fv9TqXy9VkklM+jhhiRxESBFGBelrqhkZpJIgHjFyFd21Z/zqnkhFE/FbT1My4uhW0JhipI0V1rZ7YZBO6P6vE/YUcKQnUZw/FiH9FtYaXtObBywL34oGsNEL65U0GCc440RozJBSQ99L9ShHUlPMSOEGmSIpwnfolgyNFIgTNcrnXyjgnnHGME6kOULDufu2IkdcqSmPTOasS7XMZuZ7bJjp+GiUU5Fmmgi8eCjOGNQJnM0DjqkkWLOpEQhLanqFeIIkwtpMzQ0EecAJ50iM8yA6K3Jzx/CsKJZIy5JWiQwsGZRI15JuiVxbcl0ibUvahriu2ZG/vJGyuPze9A+aPy9+NE6P7baqYAfsgn3gg0NwCjqgB/oAg2fwB/wF/5xdp+OcOxeLVKdia7bAf+HcvAI7YdDY</latexit>

P�(G = l|xi)

8

• Combination of a cross entropy loss (accuracy of prediction) + inference cost
(fixed cost per layer)

• Approximated loss

JOINTLY-LEARNED EXIT AND INFERENCE FOR A
DYNAMIC NEURAL NETWORK : JEI-DNN

FLORENCE REGOL†, JOUD CHATAOUI† and MARK COATES - McGill University, ECSE Department

MOTIVATING EARLY-EXITING

Problem Machine learning
models are increasingly
resource hungry.

Idea Not all inferences need
the same amount of com-
putation to be successful.

 Neural Network

 Neural Network (backbone)

 GMs
Gate
mechanisms

 IMs
Inference
modules

x

classifier 1

gate 1

X

classifier 2

gate 2

o

x layer 1 layer 2 layer L classifierL

layer 1 layer 2

Traditional Architecture

Early-Exit Dynamic Network (EEDN)

Computation skipped

EEDNs can adapt their computation to the sample at-hand.
! Reduction of inference cost.

STATE-OF-THE-ART EEDN BASELINES
Existing work: Focus on the IMs and use fixed-threshold (⌘) GMs:

gate l =

(
earlyexit if maxk p̂l

k > ⌘

continue o.w.
, p̂l = predicted prob. IM l

Issues:

1. IMs and GMs are disconnected during training.
2. Uncertainty information is already consumed by maxk p̂l

k.
3. Heavily relies on p̂l being accurate. ! wrong:

Early IMs have an ECE
(ECE ⇡ Error on p̂l) of
more than 10%.

JEI-DNN OVERVIEW
Our solution:

• Learn the GMs. ! Uncertainty information.

• Model the GMs as a random variable p�(G = l|x).

• Jointly train the IMs and the GMs. ! No disconnect.

JEI-DNN loss:
Expectation over cross-entropy LCE + weighted inference cost �IC.

L = EY,XEG|X [LCE(Y, p̂G|X
✓ (X)) + �ICG|X]. (1)

Optimization:
Bi-level formulation.
Alternates between training
1) The GMs parameters �.
2) The IMs parameters ✓.

C⇤l
✓ =Cost of choosing IM l,

P ⇤
� (G = l) =Prob. of choosing IM l,

gl� =Parameter of P�(G),

ŷl✓ =Prediction of IM l.

Joint training via bi-level
optimization
GMs training

... ...

SAMPLE EXIT PATTERN
JEI-DNN vs SOTA baselines BoostedNet [1] and L2W-DEN [2].

Accuracy on exited samples. JEI-DNN

• High accuracy on early ex-
its.

• Low accuracy on late exits.
• Concentrates on few IMs.
• Starts to exit at IMs 4, 5.

vs

L2W-DEN and BoostedNet

• Low accuracy on early ex-
its.

• High accuracy on late exits.
• Dispersed on all IMs.
• Starts to exit at IMs 1.

RESULTS
Experiments on classification datasets, with T2T-ViT backbone [3].

JEI-DNN has better accuracy vs inference cost (Mul-Add):

CIFAR100 (t2t-14) SVHN (t2t-7) CIFAR100LT (t2t-14)

JEI-DNN can enhance any architecture:

ImageNet (Dynamic Perceiver [4],
SOTA dynamic architectures)

Super-Resolution-MNIST (GRIT [5], a
graph learning algorithm)

JEI-DNN has better uncertainty characterization:

ECE vs Mul-Add.
CIFAR100 (t2t-14.

Inefficiency vs Mul-Add.
CIFAR100 (t2t-14).

Average empirical ↵̂ vs
requested ↵.

Def. conformal prediction: Outputs a conformal interval C that contains the
ground truth with probability 1� ↵. The smaller the |C| the better.

REFERENCES
[1] H. Yu, H. Li, G. Hua, G. Huang, and H. Shi, “Boosted dynamic neural networks,” in Proc. AAAI Conf. on Artificial Intell., vol. 37, 2023.

[2] Y. Han, Y. Pu, Z. Lai, C. Wang, S. Song, J. Cao, W. Huang, C. Deng, and G. Huang, “Learning to weight samples for dynamic
early-exiting networks,” in Proc. European Conf. on Computer Vision (ECCV), 2022.

[3] L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, Z. Jiang, F. E. Tay, J. Feng, and S. Yan, “Tokens-to-token ViT: Training vision transformers
from scratch on imagenet,” in Proc, IEEE Int. Conf. on Computer Vision (ICCV), 2021.

[4] Y. Han, D. Han, Z. Liu, Y. Wang, X. Pan, Y. Pu, C. Deng, J. Feng, S. Song, and G. Huang, “Dynamic perceiver for efficient visual
recognition,” in Proc, IEEE Int. Conf. on Computer Vision (ICCV), 2023.

[5] L. Ma, C. Lin, D. Lim, A. Romero-Soriano, P. K. Dokania, M. Coates, P. Torr, and S.-N. Lim, “Graph inductive biases in transformers
without message passing,” in Proc. Int. Conf. Machine Learning. (ICML), 2023.

Loss of JEI-DNN

Under review as a conference paper at ICLR 2024

Our goal is to simultaneously learn the parameters ✓ of the IMs and choose P (G = l�xi) in order
to minimize the expected loss as shown in Figure 1. We target P (G = l�xi) rather than P (Ej �xi)
for j = 1, . . . , l because directly learning the P (Ej) leads to optimization issues. The product of
probabilities across multiple layers can quickly vanish or saturate to 1.

Modeling P (G�xi). In practice, we only need to evaluate P (G = l�xi) if the dynamic evaluation
has reached that point, i.e., everything up to f l

✓(zli) has been evaluated and is accessible. There-
fore, our parameterization of P (G = l�xi) can include any intermediate values calculated by the
base architecture, the inference modules, and the gates up to and including layer l. We denote this
aggregation of information as c≤li .

This however also implies that we cannot directly model the multiclass distribution P (G�xi) with
the traditional softmax approach since it would require f l

✓(zli) to be evaluated for all l. This would
defeat the purpose of early-exiting. Instead, we model each P (G = l�xi) sequentially, starting from
the first layer l = 1, with a learnable variable gl�(c≤li) ∈ [0,1]. We set P (G = l�xi) to the minimum
of the learnable variable gl�(c≤li) ∈ [0,1] and 1 −∑l−1

j=1 gj�(c≤ji). Since the model must exit at the
final gate if it has not already done so, we have gL(c≤Li) = 1. Thus:

P�(G = 1�xi) = g1�(c≤1i), (7)

P�(G = l�xi) =min(gl�(c≤li),1 − l−1�
j=1

gj�(c≤ji)) for l = 2, . . . , L . (8)

The min operator in Eq. (8) ensures that the {P�(G = l�xi); l = 1, . . . , L} form a valid probability
distribution. The loss is then a proper approximation of the expectation in Eq. (5). It also guarantees
that P (El�X = x), calculated using (4), which that governs the decision to exit, lies in [0,1].
This formulation leads to a much more stable model for the gate probabilities compared to a param-
eterization through P (El�x). A deviation in one of the gl�s has an additive rather than multiplicative
impact on subsequent P�(G = l�xi)s. The left diagram in figure 1 depicts the modeling of P (G�xi).
Our approximated loss from equation 6 is then:

L ≈ 1

N

N�
i=1

L�
l=1
(LCE(yi, p̂l

✓(xi)) + �ICl
norm)min�gl�(c≤li),1 − l−1�

j=1
gj�(c≤ji)�. (9)

Any parameterization of the IMs f l
✓ and gates function gl�(c≤ji) can be adopted. However, the

modules must be small compared to the size of one layer of the backbone model to prevent them
from substantially increasing the computational cost of the entire layer during inference. In our
experiments, f l

✓ and gl�(c≤ji) are parameterized as simple one-layer neural networks and uncertainty
metrics are extracted from c≤ji to serve as input to gl�(⋅). A detailed description of our modules is
included in Section 4. Appendix 8.2 includes the inference cost of the gates and IMs to demonstrate
that the added computation is minimal when compared to the inference cost of a single layer. (The
total added computation amounts to less than 1.12% of the Mul-Adds of the backbone.)

Uncertainty prediction : Next we describe how we use the predicted probabilities p̂l
✓(xi) to form

conformal intervals. The conformal intervals are derived from a conformal threshold ⌧V,↵ that is
computed using a validation set V . However, since we can view the IMs as solving different subtasks
over different subsets of the data Dl, we should compute a different conformal threshold for each
subtask. Hence, we form one validation set per gate, V l, where V l = {i; l ∼ P�(G�xi) , i ∈ V},
and compute a conformal threshold from that subset: ⌧Vl,↵. If there are too few samples in the
validation set associated with gate l, we set ⌧Vl,↵ to a general threshold ⌧V,↵ computed using the
entire validation set. The conformal intervals are then constructed as follows:

Ci = {k; 1 − p̂l,(k)
✓ (xi) < ⌧Vl,↵ , l ∼ P (G�xi)} (10)

There are many other ways to construct the sets to compute the threshold in the EDNN setting. In
Appendix 8.3, we show that a variety of methods produce similar results.

We present candidate designs for the gates and IMs for concreteness, but note that other choices are
possible within the JEI-DNN framework.

5

Prob. Exiting at Gate l

Cost of Exiting at Gate l: Inference + Accuracy

9

• Optimization is challenging because of the min operator

• Bi-level optimization

• Let

Optimization

Under review as a conference paper at ICLR 2024

Gate design gl�(c≤li): To ensure a lightweight design, we construct a small number of fea-
tures by computing uncertainty statistics from the output p̂l of the l-th IM, f l

✓(xi). Hence
the l-th gate can be represented as gl�(c≤li) = gl�(m(✓,xi)). We choose m(✓,xi) =[p̂l,max

i (xi), hl(xi), hl
pow(xi),marl(xi)]T where p̂l,max

i (xi) is maximum predicted probability,
hl(xi) is the entropy, hl

pow(xi) is the entropy scaled by a temperature, and marl(xi) is the differ-
ence between the two most confident predictions. For more detail see Appendix 8.9.

IM design f l
✓(z≤li): The IMs f l

✓(z≤li) all have the same architecture. We reduce cost by limiting
their input size and number of layers. The input to f l

✓ is only zli and the IM is a single layer NN.
The lightweight design allows us to insert exit branches at every layer. This gives our model greater
exit flexibility, in contrast with many existing approaches (Chiang et al., 2021; Lahiany & Aperstein,
2022; Li et al., 2023; Ilhan et al., 2023), which typically use only a few exit branches.

4.1 OPTIMIZATION

Directly optimizing the loss in equation 9 is challenging because of the min operator:

�∗, ✓∗ = argmin
�,✓

1

N

N�
i=1

L�
l=1
(LCE(yi, p̂l

✓(xi)) + �ICl
norm)min�gl�(c≤li),1 − l−1�

j=1
gj�(c≤ji �. (11)

However, there is a distinction between the parameters ✓ and � which makes this loss a good can-
didate for a bi-level optimization formulation. (See (Chen et al., 2023a) for a survey.) Hence, using
Cl

✓(�) = LCE(yi, p̂l
✓(xi)) + �ICl

norm, we can rewrite equation 11 as follows:

�∗ = argmin
�
Lout � argmin

�

1

N

N�
i=1

L�
l=1

Cl
✓∗(�)P�(G = l�xi), (12)

s.t. ✓∗(�) = argmin
✓
Lin � argmin

✓

1

N

N�
i=1

L�
l=1
(LCE(yi, p̂l

✓(xi) + �ICl
norm)P�(G = l�xi). (13)

Since the gate probabilities P�(G = l�xi) take as input the aggregation of any intermediate values
that were previously calculated c≤li , it could be dependent on the ✓. To make that dependence explicit
in the calculation of the gradient of ✓, we denote P�(G = l�xi) = G�(m(✓,xi)). The derivative of
the loss with respect to the two different set of parameters is given by:

@Lin

@✓
= 1

N

N�
i=1

L�
l=1

@LCE(yi, p̂l
✓(xi))

@✓
P�(G = l�xi) + @G�(m(✓,xi))

@✓
Cl

✓(�) , (14)

@Lout

@�
= 1

N

N�
i=1

L�
l=1

@P�(G = l�xi)
@�

Cl
✓∗(�) = 1

N

N�
i=1

L�
l=1

@min �gl�(c≤li),1 −∑l−1
j=1 gj�(c≤ji �

@�
Cl

✓∗(�) . (15)

Eq. (15) is undefined when the min operator terms are equal. We address this issue below when
describing how to optimize the gates.
Optimizing the IMs: By inspecting equation 14, we can recognize that the left term is the same
gradient that is encountered for a straightforward weighted cross-entropy loss. Interestingly, our
principled approach leads to an objective with a term that is similar to the one proposed by Han
et al. (2022b) to address the train-test mismatch issue. In our case, the weights emerge directly
from our proposed gating mechanism: P�(G = l�xi). The right term is driven by the impact of the
✓ parameter on the gates:@G�(m(✓,xi))

@✓ . In practice, we observe that ignoring the right term of the
gradient does not impact performance and leads to faster convergence, as we show in Appendix 8.7.

Optimizing the gates The second derivative in equation 15 is more challenging, making direct
optimization undesirable. Instead, we construct surrogate binary classification tasks to train the gl�.
For a given sample xi we construct binary targets for g1�(c≤1i), ..., gL−1� (c≤L−1i) by evaluating the
relative cost of each gate Cl

✓∗(�) and determining which of the L gates has the lowest cost, denoted
as l∗ = argminlC

l
✓∗(�). This is the gate at which xi should exit. Hence, we set the binary target of

gate l∗ to 1, and the binary targets for all of the preceding gates to zero. As for the subsequent gates,

6

Under review as a conference paper at ICLR 2024

Gate design gl�(c≤li): To ensure a lightweight design, we construct a small number of fea-
tures by computing uncertainty statistics from the output p̂l of the l-th IM, f l

✓(xi). Hence
the l-th gate can be represented as gl�(c≤li) = gl�(m(✓,xi)). We choose m(✓,xi) =[p̂l,max

i (xi), hl(xi), hl
pow(xi),marl(xi)]T where p̂l,max

i (xi) is maximum predicted probability,
hl(xi) is the entropy, hl

pow(xi) is the entropy scaled by a temperature, and marl(xi) is the differ-
ence between the two most confident predictions. For more detail see Appendix 8.9.

IM design f l
✓(z≤li): The IMs f l

✓(z≤li) all have the same architecture. We reduce cost by limiting
their input size and number of layers. The input to f l

✓ is only zli and the IM is a single layer NN.
The lightweight design allows us to insert exit branches at every layer. This gives our model greater
exit flexibility, in contrast with many existing approaches (Chiang et al., 2021; Lahiany & Aperstein,
2022; Li et al., 2023; Ilhan et al., 2023), which typically use only a few exit branches.

4.1 OPTIMIZATION

Directly optimizing the loss in equation 9 is challenging because of the min operator:

�∗, ✓∗ = argmin
�,✓

1

N

N�
i=1

L�
l=1
(LCE(yi, p̂l

✓(xi)) + �ICl
norm)min�gl�(c≤li),1 − l−1�

j=1
gj�(c≤ji �. (11)

However, there is a distinction between the parameters ✓ and � which makes this loss a good can-
didate for a bi-level optimization formulation. (See (Chen et al., 2023a) for a survey.) Hence, using
Cl

✓(�) = LCE(yi, p̂l
✓(xi)) + �ICl

norm, we can rewrite equation 11 as follows:

�∗ = argmin
�
Lout � argmin

�

1

N

N�
i=1

L�
l=1

Cl
✓∗(�)P�(G = l�xi), (12)

s.t. ✓∗(�) = argmin
✓
Lin � argmin

✓

1

N

N�
i=1

L�
l=1
(LCE(yi, p̂l

✓(xi) + �ICl
norm)P�(G = l�xi). (13)

Since the gate probabilities P�(G = l�xi) take as input the aggregation of any intermediate values
that were previously calculated c≤li , it could be dependent on the ✓. To make that dependence explicit
in the calculation of the gradient of ✓, we denote P�(G = l�xi) = G�(m(✓,xi)). The derivative of
the loss with respect to the two different set of parameters is given by:

@Lin

@✓
= 1

N

N�
i=1

L�
l=1

@LCE(yi, p̂l
✓(xi))

@✓
P�(G = l�xi) + @G�(m(✓,xi))

@✓
Cl

✓(�) , (14)

@Lout

@�
= 1

N

N�
i=1

L�
l=1

@P�(G = l�xi)
@�

Cl
✓∗(�) = 1

N

N�
i=1

L�
l=1

@min �gl�(c≤li),1 −∑l−1
j=1 gj�(c≤ji �

@�
Cl

✓∗(�) . (15)

Eq. (15) is undefined when the min operator terms are equal. We address this issue below when
describing how to optimize the gates.
Optimizing the IMs: By inspecting equation 14, we can recognize that the left term is the same
gradient that is encountered for a straightforward weighted cross-entropy loss. Interestingly, our
principled approach leads to an objective with a term that is similar to the one proposed by Han
et al. (2022b) to address the train-test mismatch issue. In our case, the weights emerge directly
from our proposed gating mechanism: P�(G = l�xi). The right term is driven by the impact of the
✓ parameter on the gates:@G�(m(✓,xi))

@✓ . In practice, we observe that ignoring the right term of the
gradient does not impact performance and leads to faster convergence, as we show in Appendix 8.7.

Optimizing the gates The second derivative in equation 15 is more challenging, making direct
optimization undesirable. Instead, we construct surrogate binary classification tasks to train the gl�.
For a given sample xi we construct binary targets for g1�(c≤1i), ..., gL−1� (c≤L−1i) by evaluating the
relative cost of each gate Cl

✓∗(�) and determining which of the L gates has the lowest cost, denoted
as l∗ = argminlC

l
✓∗(�). This is the gate at which xi should exit. Hence, we set the binary target of

gate l∗ to 1, and the binary targets for all of the preceding gates to zero. As for the subsequent gates,

6

Outer: gate parameters

Inner: IM parameters

10

• The gate probabilities take as input.

• These can depend on 𝜃. Make the dependence explicit by writing

• Then:

Optimizing the IMs

Under review as a conference paper at ICLR 2024

Gate design gl�(c≤li): To ensure a lightweight design, we construct a small number of fea-
tures by computing uncertainty statistics from the output p̂l of the l-th IM, f l

✓(xi). Hence
the l-th gate can be represented as gl�(c≤li) = gl�(m(✓,xi)). We choose m(✓,xi) =[p̂l,max

i (xi), hl(xi), hl
pow(xi),marl(xi)]T where p̂l,max

i (xi) is maximum predicted probability,
hl(xi) is the entropy, hl

pow(xi) is the entropy scaled by a temperature, and marl(xi) is the differ-
ence between the two most confident predictions. For more detail see Appendix 8.9.

IM design f l
✓(z≤li): The IMs f l

✓(z≤li) all have the same architecture. We reduce cost by limiting
their input size and number of layers. The input to f l

✓ is only zli and the IM is a single layer NN.
The lightweight design allows us to insert exit branches at every layer. This gives our model greater
exit flexibility, in contrast with many existing approaches (Chiang et al., 2021; Lahiany & Aperstein,
2022; Li et al., 2023; Ilhan et al., 2023), which typically use only a few exit branches.

4.1 OPTIMIZATION

Directly optimizing the loss in equation 9 is challenging because of the min operator:

�∗, ✓∗ = argmin
�,✓

1

N

N�
i=1

L�
l=1
(LCE(yi, p̂l

✓(xi)) + �ICl
norm)min�gl�(c≤li),1 − l−1�

j=1
gj�(c≤ji �. (11)

However, there is a distinction between the parameters ✓ and � which makes this loss a good can-
didate for a bi-level optimization formulation. (See (Chen et al., 2023a) for a survey.) Hence, using
Cl

✓(�) = LCE(yi, p̂l
✓(xi)) + �ICl

norm, we can rewrite equation 11 as follows:

�∗ = argmin
�
Lout � argmin

�

1

N

N�
i=1

L�
l=1

Cl
✓∗(�)P�(G = l�xi), (12)

s.t. ✓∗(�) = argmin
✓
Lin � argmin

✓

1

N

N�
i=1

L�
l=1
(LCE(yi, p̂l

✓(xi) + �ICl
norm)P�(G = l�xi). (13)

Since the gate probabilities P�(G = l�xi) take as input the aggregation of any intermediate values
that were previously calculated c≤li , it could be dependent on the ✓. To make that dependence explicit
in the calculation of the gradient of ✓, we denote P�(G = l�xi) = G�(m(✓,xi)). The derivative of
the loss with respect to the two different set of parameters is given by:

@Lin

@✓
= 1

N

N�
i=1

L�
l=1

@LCE(yi, p̂l
✓(xi))

@✓
P�(G = l�xi) + @G�(m(✓,xi))

@✓
Cl

✓(�) , (14)

@Lout

@�
= 1

N

N�
i=1

L�
l=1

@P�(G = l�xi)
@�

Cl
✓∗(�) = 1

N

N�
i=1

L�
l=1

@min �gl�(c≤li),1 −∑l−1
j=1 gj�(c≤ji �

@�
Cl

✓∗(�) . (15)

Eq. (15) is undefined when the min operator terms are equal. We address this issue below when
describing how to optimize the gates.
Optimizing the IMs: By inspecting equation 14, we can recognize that the left term is the same
gradient that is encountered for a straightforward weighted cross-entropy loss. Interestingly, our
principled approach leads to an objective with a term that is similar to the one proposed by Han
et al. (2022b) to address the train-test mismatch issue. In our case, the weights emerge directly
from our proposed gating mechanism: P�(G = l�xi). The right term is driven by the impact of the
✓ parameter on the gates:@G�(m(✓,xi))

@✓ . In practice, we observe that ignoring the right term of the
gradient does not impact performance and leads to faster convergence, as we show in Appendix 8.7.

Optimizing the gates The second derivative in equation 15 is more challenging, making direct
optimization undesirable. Instead, we construct surrogate binary classification tasks to train the gl�.
For a given sample xi we construct binary targets for g1�(c≤1i), ..., gL−1� (c≤L−1i) by evaluating the
relative cost of each gate Cl

✓∗(�) and determining which of the L gates has the lowest cost, denoted
as l∗ = argminlC

l
✓∗(�). This is the gate at which xi should exit. Hence, we set the binary target of

gate l∗ to 1, and the binary targets for all of the preceding gates to zero. As for the subsequent gates,

6

<latexit sha1_base64="Xgm/jBN1T9ykQqSKKO1uQfKzs/g=">AAACnXicbZFNTxsxEIadhfKx/SBQceoBqxFST9FuVT4OHICoUpEqBBIhQdk08jqzYGF7F9sLiqz9Mb2WX8S/qRN8gCwj2Xr1PjOa0UxacKZNFD01goXFd0vLK6vh+w8fP6011zcudV4qCl2a81z1U6KBMwldwwyHfqGAiJRDL73tTHnvHpRmubwwkwKGglxLljFKjLNGzc1EEHOTZpZWI/bHJhzuMK9GzVbUjmaB6yL2ooV8nI3WG0UyzmkpQBrKidaDOCrM0BJlGOVQhUmpoSD0llzDwElJBOihnc1f4W3njHGWK/ekwTP3ZYUlQuuJSF3mdFo9z6bmW2xQmmx/aJksSgOSPjfKSo5NjqfLwGOmgBo+cYJQxdysmN4QRahxKwsTCQ80F4LIsU3So8q6P8NHVTVHjj05rpG+J/0aOfHkpEauPLmqkY4nHUfC0N0onr9IXVx+b8e77Z3zH63DA3+tFfQFfUXfUIz20CH6hc5QF1Fk0V/0Dz0GW8HP4Hdw+pwaNHzNZ/Qqgt5/Z/7QHA==</latexit>

cl
i

Under review as a conference paper at ICLR 2024

Gate design gl�(c≤li): To ensure a lightweight design, we construct a small number of fea-
tures by computing uncertainty statistics from the output p̂l of the l-th IM, f l

✓(xi). Hence
the l-th gate can be represented as gl�(c≤li) = gl�(m(✓,xi)). We choose m(✓,xi) =[p̂l,max

i (xi), hl(xi), hl
pow(xi),marl(xi)]T where p̂l,max

i (xi) is maximum predicted probability,
hl(xi) is the entropy, hl

pow(xi) is the entropy scaled by a temperature, and marl(xi) is the differ-
ence between the two most confident predictions. For more detail see Appendix 8.9.

IM design f l
✓(z≤li): The IMs f l

✓(z≤li) all have the same architecture. We reduce cost by limiting
their input size and number of layers. The input to f l

✓ is only zli and the IM is a single layer NN.
The lightweight design allows us to insert exit branches at every layer. This gives our model greater
exit flexibility, in contrast with many existing approaches (Chiang et al., 2021; Lahiany & Aperstein,
2022; Li et al., 2023; Ilhan et al., 2023), which typically use only a few exit branches.

4.1 OPTIMIZATION

Directly optimizing the loss in equation 9 is challenging because of the min operator:

�∗, ✓∗ = argmin
�,✓

1

N

N�
i=1

L�
l=1
(LCE(yi, p̂l

✓(xi)) + �ICl
norm)min�gl�(c≤li),1 − l−1�

j=1
gj�(c≤ji �. (11)

However, there is a distinction between the parameters ✓ and � which makes this loss a good can-
didate for a bi-level optimization formulation. (See (Chen et al., 2023a) for a survey.) Hence, using
Cl

✓(�) = LCE(yi, p̂l
✓(xi)) + �ICl

norm, we can rewrite equation 11 as follows:

�∗ = argmin
�
Lout � argmin

�

1

N

N�
i=1

L�
l=1

Cl
✓∗(�)P�(G = l�xi), (12)

s.t. ✓∗(�) = argmin
✓
Lin � argmin

✓

1

N

N�
i=1

L�
l=1
(LCE(yi, p̂l

✓(xi) + �ICl
norm)P�(G = l�xi). (13)

Since the gate probabilities P�(G = l�xi) take as input the aggregation of any intermediate values
that were previously calculated c≤li , it could be dependent on the ✓. To make that dependence explicit
in the calculation of the gradient of ✓, we denote P�(G = l�xi) = G�(m(✓,xi)). The derivative of
the loss with respect to the two different set of parameters is given by:

@Lin

@✓
= 1

N

N�
i=1

L�
l=1

@LCE(yi, p̂l
✓(xi))

@✓
P�(G = l�xi) + @G�(m(✓,xi))

@✓
Cl

✓(�) , (14)

@Lout

@�
= 1

N

N�
i=1

L�
l=1

@P�(G = l�xi)
@�

Cl
✓∗(�) = 1

N

N�
i=1

L�
l=1

@min �gl�(c≤li),1 −∑l−1
j=1 gj�(c≤ji �

@�
Cl

✓∗(�) . (15)

Eq. (15) is undefined when the min operator terms are equal. We address this issue below when
describing how to optimize the gates.
Optimizing the IMs: By inspecting equation 14, we can recognize that the left term is the same
gradient that is encountered for a straightforward weighted cross-entropy loss. Interestingly, our
principled approach leads to an objective with a term that is similar to the one proposed by Han
et al. (2022b) to address the train-test mismatch issue. In our case, the weights emerge directly
from our proposed gating mechanism: P�(G = l�xi). The right term is driven by the impact of the
✓ parameter on the gates:@G�(m(✓,xi))

@✓ . In practice, we observe that ignoring the right term of the
gradient does not impact performance and leads to faster convergence, as we show in Appendix 8.7.

Optimizing the gates The second derivative in equation 15 is more challenging, making direct
optimization undesirable. Instead, we construct surrogate binary classification tasks to train the gl�.
For a given sample xi we construct binary targets for g1�(c≤1i), ..., gL−1� (c≤L−1i) by evaluating the
relative cost of each gate Cl

✓∗(�) and determining which of the L gates has the lowest cost, denoted
as l∗ = argminlC

l
✓∗(�). This is the gate at which xi should exit. Hence, we set the binary target of

gate l∗ to 1, and the binary targets for all of the preceding gates to zero. As for the subsequent gates,

6

11

• First term is the gradient corresponding to a weighted cross-entropy loss

• Weights emerge directly from the gating mechanism

• Second term is driven by impact of 𝜃 on the gates

• Practical approximation: ignore the second term (represents a secondary effect)

Optimizing the IMs

Under review as a conference paper at ICLR 2024

Gate design gl�(c≤li): To ensure a lightweight design, we construct a small number of fea-
tures by computing uncertainty statistics from the output p̂l of the l-th IM, f l

✓(xi). Hence
the l-th gate can be represented as gl�(c≤li) = gl�(m(✓,xi)). We choose m(✓,xi) =[p̂l,max

i (xi), hl(xi), hl
pow(xi),marl(xi)]T where p̂l,max

i (xi) is maximum predicted probability,
hl(xi) is the entropy, hl

pow(xi) is the entropy scaled by a temperature, and marl(xi) is the differ-
ence between the two most confident predictions. For more detail see Appendix 8.9.

IM design f l
✓(z≤li): The IMs f l

✓(z≤li) all have the same architecture. We reduce cost by limiting
their input size and number of layers. The input to f l

✓ is only zli and the IM is a single layer NN.
The lightweight design allows us to insert exit branches at every layer. This gives our model greater
exit flexibility, in contrast with many existing approaches (Chiang et al., 2021; Lahiany & Aperstein,
2022; Li et al., 2023; Ilhan et al., 2023), which typically use only a few exit branches.

4.1 OPTIMIZATION

Directly optimizing the loss in equation 9 is challenging because of the min operator:

�∗, ✓∗ = argmin
�,✓

1

N

N�
i=1

L�
l=1
(LCE(yi, p̂l

✓(xi)) + �ICl
norm)min�gl�(c≤li),1 − l−1�

j=1
gj�(c≤ji �. (11)

However, there is a distinction between the parameters ✓ and � which makes this loss a good can-
didate for a bi-level optimization formulation. (See (Chen et al., 2023a) for a survey.) Hence, using
Cl

✓(�) = LCE(yi, p̂l
✓(xi)) + �ICl

norm, we can rewrite equation 11 as follows:

�∗ = argmin
�
Lout � argmin

�

1

N

N�
i=1

L�
l=1

Cl
✓∗(�)P�(G = l�xi), (12)

s.t. ✓∗(�) = argmin
✓
Lin � argmin

✓

1

N

N�
i=1

L�
l=1
(LCE(yi, p̂l

✓(xi) + �ICl
norm)P�(G = l�xi). (13)

Since the gate probabilities P�(G = l�xi) take as input the aggregation of any intermediate values
that were previously calculated c≤li , it could be dependent on the ✓. To make that dependence explicit
in the calculation of the gradient of ✓, we denote P�(G = l�xi) = G�(m(✓,xi)). The derivative of
the loss with respect to the two different set of parameters is given by:

@Lin

@✓
= 1

N

N�
i=1

L�
l=1

@LCE(yi, p̂l
✓(xi))

@✓
P�(G = l�xi) + @G�(m(✓,xi))

@✓
Cl

✓(�) , (14)

@Lout

@�
= 1

N

N�
i=1

L�
l=1

@P�(G = l�xi)
@�

Cl
✓∗(�) = 1

N

N�
i=1

L�
l=1

@min �gl�(c≤li),1 −∑l−1
j=1 gj�(c≤ji �

@�
Cl

✓∗(�) . (15)

Eq. (15) is undefined when the min operator terms are equal. We address this issue below when
describing how to optimize the gates.
Optimizing the IMs: By inspecting equation 14, we can recognize that the left term is the same
gradient that is encountered for a straightforward weighted cross-entropy loss. Interestingly, our
principled approach leads to an objective with a term that is similar to the one proposed by Han
et al. (2022b) to address the train-test mismatch issue. In our case, the weights emerge directly
from our proposed gating mechanism: P�(G = l�xi). The right term is driven by the impact of the
✓ parameter on the gates:@G�(m(✓,xi))

@✓ . In practice, we observe that ignoring the right term of the
gradient does not impact performance and leads to faster convergence, as we show in Appendix 8.7.

Optimizing the gates The second derivative in equation 15 is more challenging, making direct
optimization undesirable. Instead, we construct surrogate binary classification tasks to train the gl�.
For a given sample xi we construct binary targets for g1�(c≤1i), ..., gL−1� (c≤L−1i) by evaluating the
relative cost of each gate Cl

✓∗(�) and determining which of the L gates has the lowest cost, denoted
as l∗ = argminlC

l
✓∗(�). This is the gate at which xi should exit. Hence, we set the binary target of

gate l∗ to 1, and the binary targets for all of the preceding gates to zero. As for the subsequent gates,

6

12

• Alternative approach: define a surrogate binary classification problem

• Construct binary targets for

• Evaluate the cost of each gate and determine lowest cost

• Targets for binary tasks are

• The surrogate tasks and initial objective share same solution if there exists 𝜙
such that the gating mechanisms can always select lowest-cost gates.

Optimizing the Gates

Under review as a conference paper at ICLR 2024

Gate design gl�(c≤li): To ensure a lightweight design, we construct a small number of fea-
tures by computing uncertainty statistics from the output p̂l of the l-th IM, f l

✓(xi). Hence
the l-th gate can be represented as gl�(c≤li) = gl�(m(✓,xi)). We choose m(✓,xi) =[p̂l,max

i (xi), hl(xi), hl
pow(xi),marl(xi)]T where p̂l,max

i (xi) is maximum predicted probability,
hl(xi) is the entropy, hl

pow(xi) is the entropy scaled by a temperature, and marl(xi) is the differ-
ence between the two most confident predictions. For more detail see Appendix 8.9.

IM design f l
✓(z≤li): The IMs f l

✓(z≤li) all have the same architecture. We reduce cost by limiting
their input size and number of layers. The input to f l

✓ is only zli and the IM is a single layer NN.
The lightweight design allows us to insert exit branches at every layer. This gives our model greater
exit flexibility, in contrast with many existing approaches (Chiang et al., 2021; Lahiany & Aperstein,
2022; Li et al., 2023; Ilhan et al., 2023), which typically use only a few exit branches.

4.1 OPTIMIZATION

Directly optimizing the loss in equation 9 is challenging because of the min operator:

�∗, ✓∗ = argmin
�,✓

1

N

N�
i=1

L�
l=1
(LCE(yi, p̂l

✓(xi)) + �ICl
norm)min�gl�(c≤li),1 − l−1�

j=1
gj�(c≤ji �. (11)

However, there is a distinction between the parameters ✓ and � which makes this loss a good can-
didate for a bi-level optimization formulation. (See (Chen et al., 2023a) for a survey.) Hence, using
Cl

✓(�) = LCE(yi, p̂l
✓(xi)) + �ICl

norm, we can rewrite equation 11 as follows:

�∗ = argmin
�
Lout � argmin

�

1

N

N�
i=1

L�
l=1

Cl
✓∗(�)P�(G = l�xi), (12)

s.t. ✓∗(�) = argmin
✓
Lin � argmin

✓

1

N

N�
i=1

L�
l=1
(LCE(yi, p̂l

✓(xi) + �ICl
norm)P�(G = l�xi). (13)

Since the gate probabilities P�(G = l�xi) take as input the aggregation of any intermediate values
that were previously calculated c≤li , it could be dependent on the ✓. To make that dependence explicit
in the calculation of the gradient of ✓, we denote P�(G = l�xi) = G�(m(✓,xi)). The derivative of
the loss with respect to the two different set of parameters is given by:

@Lin

@✓
= 1

N

N�
i=1

L�
l=1

@LCE(yi, p̂l
✓(xi))

@✓
P�(G = l�xi) + @G�(m(✓,xi))

@✓
Cl

✓(�) , (14)

@Lout

@�
= 1

N

N�
i=1

L�
l=1

@P�(G = l�xi)
@�

Cl
✓∗(�) = 1

N

N�
i=1

L�
l=1

@min �gl�(c≤li),1 −∑l−1
j=1 gj�(c≤ji �

@�
Cl

✓∗(�) . (15)

Eq. (15) is undefined when the min operator terms are equal. We address this issue below when
describing how to optimize the gates.
Optimizing the IMs: By inspecting equation 14, we can recognize that the left term is the same
gradient that is encountered for a straightforward weighted cross-entropy loss. Interestingly, our
principled approach leads to an objective with a term that is similar to the one proposed by Han
et al. (2022b) to address the train-test mismatch issue. In our case, the weights emerge directly
from our proposed gating mechanism: P�(G = l�xi). The right term is driven by the impact of the
✓ parameter on the gates:@G�(m(✓,xi))

@✓ . In practice, we observe that ignoring the right term of the
gradient does not impact performance and leads to faster convergence, as we show in Appendix 8.7.

Optimizing the gates The second derivative in equation 15 is more challenging, making direct
optimization undesirable. Instead, we construct surrogate binary classification tasks to train the gl�.
For a given sample xi we construct binary targets for g1�(c≤1i), ..., gL−1� (c≤L−1i) by evaluating the
relative cost of each gate Cl

✓∗(�) and determining which of the L gates has the lowest cost, denoted
as l∗ = argminlC

l
✓∗(�). This is the gate at which xi should exit. Hence, we set the binary target of

gate l∗ to 1, and the binary targets for all of the preceding gates to zero. As for the subsequent gates,

6

Under review as a conference paper at ICLR 2024

Gate design gl�(c≤li): To ensure a lightweight design, we construct a small number of fea-
tures by computing uncertainty statistics from the output p̂l of the l-th IM, f l

✓(xi). Hence
the l-th gate can be represented as gl�(c≤li) = gl�(m(✓,xi)). We choose m(✓,xi) =[p̂l,max

i (xi), hl(xi), hl
pow(xi),marl(xi)]T where p̂l,max

i (xi) is maximum predicted probability,
hl(xi) is the entropy, hl

pow(xi) is the entropy scaled by a temperature, and marl(xi) is the differ-
ence between the two most confident predictions. For more detail see Appendix 8.9.

IM design f l
✓(z≤li): The IMs f l

✓(z≤li) all have the same architecture. We reduce cost by limiting
their input size and number of layers. The input to f l

✓ is only zli and the IM is a single layer NN.
The lightweight design allows us to insert exit branches at every layer. This gives our model greater
exit flexibility, in contrast with many existing approaches (Chiang et al., 2021; Lahiany & Aperstein,
2022; Li et al., 2023; Ilhan et al., 2023), which typically use only a few exit branches.

4.1 OPTIMIZATION

Directly optimizing the loss in equation 9 is challenging because of the min operator:

�∗, ✓∗ = argmin
�,✓

1

N

N�
i=1

L�
l=1
(LCE(yi, p̂l

✓(xi)) + �ICl
norm)min�gl�(c≤li),1 − l−1�

j=1
gj�(c≤ji �. (11)

However, there is a distinction between the parameters ✓ and � which makes this loss a good can-
didate for a bi-level optimization formulation. (See (Chen et al., 2023a) for a survey.) Hence, using
Cl

✓(�) = LCE(yi, p̂l
✓(xi)) + �ICl

norm, we can rewrite equation 11 as follows:

�∗ = argmin
�
Lout � argmin

�

1

N

N�
i=1

L�
l=1

Cl
✓∗(�)P�(G = l�xi), (12)

s.t. ✓∗(�) = argmin
✓
Lin � argmin

✓

1

N

N�
i=1

L�
l=1
(LCE(yi, p̂l

✓(xi) + �ICl
norm)P�(G = l�xi). (13)

Since the gate probabilities P�(G = l�xi) take as input the aggregation of any intermediate values
that were previously calculated c≤li , it could be dependent on the ✓. To make that dependence explicit
in the calculation of the gradient of ✓, we denote P�(G = l�xi) = G�(m(✓,xi)). The derivative of
the loss with respect to the two different set of parameters is given by:

@Lin

@✓
= 1

N

N�
i=1

L�
l=1

@LCE(yi, p̂l
✓(xi))

@✓
P�(G = l�xi) + @G�(m(✓,xi))

@✓
Cl

✓(�) , (14)

@Lout

@�
= 1

N

N�
i=1

L�
l=1

@P�(G = l�xi)
@�

Cl
✓∗(�) = 1

N

N�
i=1

L�
l=1

@min �gl�(c≤li),1 −∑l−1
j=1 gj�(c≤ji �

@�
Cl

✓∗(�) . (15)

Eq. (15) is undefined when the min operator terms are equal. We address this issue below when
describing how to optimize the gates.
Optimizing the IMs: By inspecting equation 14, we can recognize that the left term is the same
gradient that is encountered for a straightforward weighted cross-entropy loss. Interestingly, our
principled approach leads to an objective with a term that is similar to the one proposed by Han
et al. (2022b) to address the train-test mismatch issue. In our case, the weights emerge directly
from our proposed gating mechanism: P�(G = l�xi). The right term is driven by the impact of the
✓ parameter on the gates:@G�(m(✓,xi))

@✓ . In practice, we observe that ignoring the right term of the
gradient does not impact performance and leads to faster convergence, as we show in Appendix 8.7.

Optimizing the gates The second derivative in equation 15 is more challenging, making direct
optimization undesirable. Instead, we construct surrogate binary classification tasks to train the gl�.
For a given sample xi we construct binary targets for g1�(c≤1i), ..., gL−1� (c≤L−1i) by evaluating the
relative cost of each gate Cl

✓∗(�) and determining which of the L gates has the lowest cost, denoted
as l∗ = argminlC

l
✓∗(�). This is the gate at which xi should exit. Hence, we set the binary target of

gate l∗ to 1, and the binary targets for all of the preceding gates to zero. As for the subsequent gates,

6

Under review as a conference paper at ICLR 2024

Gate design gl�(c≤li): To ensure a lightweight design, we construct a small number of fea-
tures by computing uncertainty statistics from the output p̂l of the l-th IM, f l

✓(xi). Hence
the l-th gate can be represented as gl�(c≤li) = gl�(m(✓,xi)). We choose m(✓,xi) =[p̂l,max

i (xi), hl(xi), hl
pow(xi),marl(xi)]T where p̂l,max

i (xi) is maximum predicted probability,
hl(xi) is the entropy, hl

pow(xi) is the entropy scaled by a temperature, and marl(xi) is the differ-
ence between the two most confident predictions. For more detail see Appendix 8.9.

IM design f l
✓(z≤li): The IMs f l

✓(z≤li) all have the same architecture. We reduce cost by limiting
their input size and number of layers. The input to f l

✓ is only zli and the IM is a single layer NN.
The lightweight design allows us to insert exit branches at every layer. This gives our model greater
exit flexibility, in contrast with many existing approaches (Chiang et al., 2021; Lahiany & Aperstein,
2022; Li et al., 2023; Ilhan et al., 2023), which typically use only a few exit branches.

4.1 OPTIMIZATION

Directly optimizing the loss in equation 9 is challenging because of the min operator:

�∗, ✓∗ = argmin
�,✓

1

N

N�
i=1

L�
l=1
(LCE(yi, p̂l

✓(xi)) + �ICl
norm)min�gl�(c≤li),1 − l−1�

j=1
gj�(c≤ji �. (11)

However, there is a distinction between the parameters ✓ and � which makes this loss a good can-
didate for a bi-level optimization formulation. (See (Chen et al., 2023a) for a survey.) Hence, using
Cl

✓(�) = LCE(yi, p̂l
✓(xi)) + �ICl

norm, we can rewrite equation 11 as follows:

�∗ = argmin
�
Lout � argmin

�

1

N

N�
i=1

L�
l=1

Cl
✓∗(�)P�(G = l�xi), (12)

s.t. ✓∗(�) = argmin
✓
Lin � argmin

✓

1

N

N�
i=1

L�
l=1
(LCE(yi, p̂l

✓(xi) + �ICl
norm)P�(G = l�xi). (13)

Since the gate probabilities P�(G = l�xi) take as input the aggregation of any intermediate values
that were previously calculated c≤li , it could be dependent on the ✓. To make that dependence explicit
in the calculation of the gradient of ✓, we denote P�(G = l�xi) = G�(m(✓,xi)). The derivative of
the loss with respect to the two different set of parameters is given by:

@Lin

@✓
= 1

N

N�
i=1

L�
l=1

@LCE(yi, p̂l
✓(xi))

@✓
P�(G = l�xi) + @G�(m(✓,xi))

@✓
Cl

✓(�) , (14)

@Lout

@�
= 1

N

N�
i=1

L�
l=1

@P�(G = l�xi)
@�

Cl
✓∗(�) = 1

N

N�
i=1

L�
l=1

@min �gl�(c≤li),1 −∑l−1
j=1 gj�(c≤ji �

@�
Cl

✓∗(�) . (15)

Eq. (15) is undefined when the min operator terms are equal. We address this issue below when
describing how to optimize the gates.
Optimizing the IMs: By inspecting equation 14, we can recognize that the left term is the same
gradient that is encountered for a straightforward weighted cross-entropy loss. Interestingly, our
principled approach leads to an objective with a term that is similar to the one proposed by Han
et al. (2022b) to address the train-test mismatch issue. In our case, the weights emerge directly
from our proposed gating mechanism: P�(G = l�xi). The right term is driven by the impact of the
✓ parameter on the gates:@G�(m(✓,xi))

@✓ . In practice, we observe that ignoring the right term of the
gradient does not impact performance and leads to faster convergence, as we show in Appendix 8.7.

Optimizing the gates The second derivative in equation 15 is more challenging, making direct
optimization undesirable. Instead, we construct surrogate binary classification tasks to train the gl�.
For a given sample xi we construct binary targets for g1�(c≤1i), ..., gL−1� (c≤L−1i) by evaluating the
relative cost of each gate Cl

✓∗(�) and determining which of the L gates has the lowest cost, denoted
as l∗ = argminlC

l
✓∗(�). This is the gate at which xi should exit. Hence, we set the binary target of

gate l∗ to 1, and the binary targets for all of the preceding gates to zero. As for the subsequent gates,

6

Under review as a conference paper at ICLR 2024

Gate design gl�(c≤li): To ensure a lightweight design, we construct a small number of fea-
tures by computing uncertainty statistics from the output p̂l of the l-th IM, f l

✓(xi). Hence
the l-th gate can be represented as gl�(c≤li) = gl�(m(✓,xi)). We choose m(✓,xi) =[p̂l,max

i (xi), hl(xi), hl
pow(xi),marl(xi)]T where p̂l,max

i (xi) is maximum predicted probability,
hl(xi) is the entropy, hl

pow(xi) is the entropy scaled by a temperature, and marl(xi) is the differ-
ence between the two most confident predictions. For more detail see Appendix 8.9.

IM design f l
✓(z≤li): The IMs f l

✓(z≤li) all have the same architecture. We reduce cost by limiting
their input size and number of layers. The input to f l

✓ is only zli and the IM is a single layer NN.
The lightweight design allows us to insert exit branches at every layer. This gives our model greater
exit flexibility, in contrast with many existing approaches (Chiang et al., 2021; Lahiany & Aperstein,
2022; Li et al., 2023; Ilhan et al., 2023), which typically use only a few exit branches.

4.1 OPTIMIZATION

Directly optimizing the loss in equation 9 is challenging because of the min operator:

�∗, ✓∗ = argmin
�,✓

1

N

N�
i=1

L�
l=1
(LCE(yi, p̂l

✓(xi)) + �ICl
norm)min�gl�(c≤li),1 − l−1�

j=1
gj�(c≤ji �. (11)

However, there is a distinction between the parameters ✓ and � which makes this loss a good can-
didate for a bi-level optimization formulation. (See (Chen et al., 2023a) for a survey.) Hence, using
Cl

✓(�) = LCE(yi, p̂l
✓(xi)) + �ICl

norm, we can rewrite equation 11 as follows:

�∗ = argmin
�
Lout � argmin

�

1

N

N�
i=1

L�
l=1

Cl
✓∗(�)P�(G = l�xi), (12)

s.t. ✓∗(�) = argmin
✓
Lin � argmin

✓

1

N

N�
i=1

L�
l=1
(LCE(yi, p̂l

✓(xi) + �ICl
norm)P�(G = l�xi). (13)

Since the gate probabilities P�(G = l�xi) take as input the aggregation of any intermediate values
that were previously calculated c≤li , it could be dependent on the ✓. To make that dependence explicit
in the calculation of the gradient of ✓, we denote P�(G = l�xi) = G�(m(✓,xi)). The derivative of
the loss with respect to the two different set of parameters is given by:

@Lin

@✓
= 1

N

N�
i=1

L�
l=1

@LCE(yi, p̂l
✓(xi))

@✓
P�(G = l�xi) + @G�(m(✓,xi))

@✓
Cl

✓(�) , (14)

@Lout

@�
= 1

N

N�
i=1

L�
l=1

@P�(G = l�xi)
@�

Cl
✓∗(�) = 1

N

N�
i=1

L�
l=1

@min �gl�(c≤li),1 −∑l−1
j=1 gj�(c≤ji �

@�
Cl

✓∗(�) . (15)

Eq. (15) is undefined when the min operator terms are equal. We address this issue below when
describing how to optimize the gates.
Optimizing the IMs: By inspecting equation 14, we can recognize that the left term is the same
gradient that is encountered for a straightforward weighted cross-entropy loss. Interestingly, our
principled approach leads to an objective with a term that is similar to the one proposed by Han
et al. (2022b) to address the train-test mismatch issue. In our case, the weights emerge directly
from our proposed gating mechanism: P�(G = l�xi). The right term is driven by the impact of the
✓ parameter on the gates:@G�(m(✓,xi))

@✓ . In practice, we observe that ignoring the right term of the
gradient does not impact performance and leads to faster convergence, as we show in Appendix 8.7.

Optimizing the gates The second derivative in equation 15 is more challenging, making direct
optimization undesirable. Instead, we construct surrogate binary classification tasks to train the gl�.
For a given sample xi we construct binary targets for g1�(c≤1i), ..., gL−1� (c≤L−1i) by evaluating the
relative cost of each gate Cl

✓∗(�) and determining which of the L gates has the lowest cost, denoted
as l∗ = argminlC

l
✓∗(�). This is the gate at which xi should exit. Hence, we set the binary target of

gate l∗ to 1, and the binary targets for all of the preceding gates to zero. As for the subsequent gates,

6

Hard!

Under review as a conference paper at ICLR 2024

since the sample is supposed to exit at l∗, we assume that it should also exit at any later gate, so
we set the binary targets of all subsequent gates to 1 as well. Hence, the targets of our binary tasks
t1i , ..., t

L
i for our gates g1�(c≤1i), ..., gL−1� (c≤L−1i) are given by tji = 0 for j < l∗ and tji = 1 for j ≥ l∗.

The connection between those surrogate tasks and the initial objective from equation 12 can be estab-
lished by showing that they can share the same solution under some assumptions. We demonstrated
this is Appendix 8.4. Hence, instead of following the gradient from equation 15, we approximate it
by the gradient of the surrogate loss:

@Lout

@�
≈ 1

N

N�
i=1

L�
l=1

@LCE(tli, gl�(c≤li))
@�

. (16)

This amounts to summing the gradients of the losses of L independent binary classification tasks. If
the tasks are highly imbalanced, we compute the class imbalanced ratio on a validation set at each
epoch and use weighted class training. Following the bi-level optimization procedure, training is
carried out by alternating between optimizing using the gradients in equation 16 and equation 14. In
practice, we start by training all IMs on the full dataset in a warmup stage as described in Section 5.
Algorithm 1 in Appendix 8.5 provides a detailed exposition of the entire algorithm.

5 EXPERIMENTS

We use the vision transformers T2T-ViT-7 and T2T-ViT-14 (Yuan et al., 2021) pretrained on the
ImageNet dataset (Deng et al., 2009) which we then transfer-learn to the datasets: CIFAR10, CI-
FAR100, CIFAR100-LT (Krizhevsky, 2009) and SVHN (Netzer et al., 2011). For dataset details,
see Appendix 8.1.1. For transfer-learning, we use the procedure from (Yuan et al., 2021). We pro-
vide checkpoints for all these models in our code. Our backbone NN for each dataset is the frozen
transfer-learned model. We augment the backbone with gates and intermediate IMs at every layer.
We generate results by varying the inference cost parameter � over the range 0.01 to 10. Rather
than sample El ∼ p(El�x) to decide whether to exit, we use the deterministic decision P (El) > 0.5.
Appendix 8.1.1 contains further details concerning hyperparameters and experimental procedure.
Training procedure: Our training procedure consists of two phases: (i) warm-up; and (ii) bi-level
optimization. In the warm-up phase the first L−1 IMs are trained in parallel on all samples for a
fixed number of warm-up epochs. This ensures that intermediate IMs are performing reasonably
well when we start training the gates. During the bi-level optimization, we alternate between opti-
mizing the gate parameters � and the IM parameters ✓. See Appendix 8.1.4 for more detail.

Figure 2: Accuracy vs Mul-Add of: Left CIFAR100 (t2t-14); Middle SVHN (t2t-7); and Right

CIFAR100LT (t2t-14). The x-axes are scaled by the full model inference cost, Mul-Add (ICL).
Baselines: We compare our proposal with the following baselines:

• BoostedNet (Yu et al., 2023) and L2W-DEN (Han et al., 2022b) are state-of-the-art benchmarks
with architecture-agnostic training procedures for general-purpose networks.

• MSDNet (Huang et al., 2018) and RANet (Yang et al., 2020) are EEDN-tailored architectures. We
also compare with the improved training procedures in (Yu et al., 2023) and (Han et al., 2022b).

7

Under review as a conference paper at ICLR 2024

since the sample is supposed to exit at l∗, we assume that it should also exit at any later gate, so
we set the binary targets of all subsequent gates to 1 as well. Hence, the targets of our binary tasks
t1i , ..., t

L
i for our gates g1�(c≤1i), ..., gL−1� (c≤L−1i) are given by tji = 0 for j < l∗ and tji = 1 for j ≥ l∗.

The connection between those surrogate tasks and the initial objective from equation 12 can be estab-
lished by showing that they can share the same solution under some assumptions. We demonstrated
this is Appendix 8.4. Hence, instead of following the gradient from equation 15, we approximate it
by the gradient of the surrogate loss:

@Lout

@�
≈ 1

N

N�
i=1

L�
l=1

@LCE(tli, gl�(c≤li))
@�

. (16)

This amounts to summing the gradients of the losses of L independent binary classification tasks. If
the tasks are highly imbalanced, we compute the class imbalanced ratio on a validation set at each
epoch and use weighted class training. Following the bi-level optimization procedure, training is
carried out by alternating between optimizing using the gradients in equation 16 and equation 14. In
practice, we start by training all IMs on the full dataset in a warmup stage as described in Section 5.
Algorithm 1 in Appendix 8.5 provides a detailed exposition of the entire algorithm.

5 EXPERIMENTS

We use the vision transformers T2T-ViT-7 and T2T-ViT-14 (Yuan et al., 2021) pretrained on the
ImageNet dataset (Deng et al., 2009) which we then transfer-learn to the datasets: CIFAR10, CI-
FAR100, CIFAR100-LT (Krizhevsky, 2009) and SVHN (Netzer et al., 2011). For dataset details,
see Appendix 8.1.1. For transfer-learning, we use the procedure from (Yuan et al., 2021). We pro-
vide checkpoints for all these models in our code. Our backbone NN for each dataset is the frozen
transfer-learned model. We augment the backbone with gates and intermediate IMs at every layer.
We generate results by varying the inference cost parameter � over the range 0.01 to 10. Rather
than sample El ∼ p(El�x) to decide whether to exit, we use the deterministic decision P (El) > 0.5.
Appendix 8.1.1 contains further details concerning hyperparameters and experimental procedure.
Training procedure: Our training procedure consists of two phases: (i) warm-up; and (ii) bi-level
optimization. In the warm-up phase the first L−1 IMs are trained in parallel on all samples for a
fixed number of warm-up epochs. This ensures that intermediate IMs are performing reasonably
well when we start training the gates. During the bi-level optimization, we alternate between opti-
mizing the gate parameters � and the IM parameters ✓. See Appendix 8.1.4 for more detail.

Figure 2: Accuracy vs Mul-Add of: Left CIFAR100 (t2t-14); Middle SVHN (t2t-7); and Right

CIFAR100LT (t2t-14). The x-axes are scaled by the full model inference cost, Mul-Add (ICL).
Baselines: We compare our proposal with the following baselines:

• BoostedNet (Yu et al., 2023) and L2W-DEN (Han et al., 2022b) are state-of-the-art benchmarks
with architecture-agnostic training procedures for general-purpose networks.

• MSDNet (Huang et al., 2018) and RANet (Yang et al., 2020) are EEDN-tailored architectures. We
also compare with the improved training procedures in (Yu et al., 2023) and (Han et al., 2022b).

7

13

• JE1-DNN versus state-of-the-art
baselines BoostedNet and L2W-DEN

• Higher accuracy on earlier exits
• Lower accuracy on later exits

• Higher average accuracy

• Concentrates on relatively few IMs

• Only starts to exit at layers 4-5.

Exit Behaviour

14

• Image classification using vision transformer: T2T-ViT-14 (Yuan et al., ICCV 2021)

• Single layer neural network gates and IMs at all layers

• Gates operate on 4 statistics based on IM output

• (i) Max. pred. prob, entropy of predictions, entropy of scaled predictions,

difference between two most confident predictions

• CIFAR10, CIFAR100: 60,000 32x32 color images with 10/100 classes

• Cropped digit SVHN: 99,289 32x32 color images of house numbers

• CIFAR100-LT: imbalanced classes (100x most common vs least common)

• ImageNet: 1.2 million 244 x 244 images; 1000 classes.

Experiments

15

• CIFAR100 with T2T-ViT-14 • SVHN with T2T-ViT-7 • CIFAR100-LT with T2T-ViT-14

16

• ImageNet with Dynamic Perceiver • Super-resolution MNIST
with Graph Transformer

Other Architectures

